The geneticist and entrepreneur hopes to use synthetic biology to transform microscopic algae into cells that eat up carbon dioxide, spit out oil and provide meals
November 15, 2011?|
?|MIRACLE CELLS?: Can algae serve as the fuel and food of the future? J. Craig Venter hopes to make it so. Image: suavehouse113 on Flickr
Microbes will be the (human) food- and fuel-makers of the future, if J. Craig Venter has his way. The man responsible for one of the original sequences of the human genome as well as the team that brought you the first living cell running on human-made DNA now hopes to harness algae to make everything humanity needs. All it takes is a little genomic engineering.
"Nothing new has to be invented. We just have to combine [genes] in a way that nature has not done before. We're speeding up evolution by billions of years," Venter told an energy conference on October 18 at the New America Foundation in Washington, D.C. "It's hard to imagine a part of humanity not substantially impacted."
Venter turned his attention to the genetic manipulation of algae after a two-year cruise to sample DNA in the ocean. The goal was to harvest the building blocks of the future for a biology that has been converted from the bases A, C, G and T into 1's and 0's?a digitized biology. He found that most of the millions of genes collected came from algae, one of the tinier organisms on the planet but one that already has an outsized planetary impact, providing more than a third of the oxygen we breathe.
Venter is looking to boost that impact further. His reengineered photosynthetic cells would take in carbon dioxide and sunlight and spew out hydrocarbons ready for the ExxonMobil refinery (the oil giant that has provided Venter's company Synthetic Genomics with $300 million in funding to date). In the process, the algae will turn a problem?CO2 causing climate change?and transform it into a solution?renewable fuels and slowed global warming. "Trying to capture CO2 and bury it is just dumb; it's going to be the renewable feedstock for the future," he said.
His commercial enterprise, Synthetic Genomics, has now also formed a new company with Mexican investment firm Plenus dubbed Agradis. Given algae's multibillion-year track record with photosynthesis and genetic experimentation Agradis's purpose is to turn that genetic cornucopia into improvements in agricultural crops, whether corn or canola?as well as use algae as a model for testing various new genetic combinations. A similar partnership between Monsanto and algae company Sapphire Energy will "use our algae platform that we developed to mine for genes that can transfer into their core agricultural products," explained Tim Zenk, Sapphire's vice president for corporate affairs in a prior interview with Scientific American. "When you do genetic screening in algae, you get hundreds of millions of traits in the screen and that accelerates the chances of finding something that can be transferred."
If that's not enough, Venter sees a role for synthetic biology in food beyond crops and livestock?specifically the growing hunger for meat around the world. "It takes 10 kilograms of grain to produce one kilogram of beef, 15 liters of water to get one kilogram of beef, and those cows produce a lot of methane," another potent greenhouse gas, Venter observed. "Why not get rid of the cows?" The replacement: meat grown in a test tube from microbes thanks to synthetic biology.
It's not likely you'll be buying microbial meat in the immediate future, but it's also clear that biology should not be overlooked as a font of solutions for that future. "The problem with existing biology is you change only one or two genes at a time," he noted of today's genetic engineering. "We're building a robot to make a million chromosomes a day and be self-learning. ? The only limitation is our knowledge of biology."
Source: http://rss.sciam.com/click.phdo?i=1fb794b25ee682fa1d37b525b917322e
ellen degeneres show ellen degeneres show david guetta david guetta work of art iphone update iphone update
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.