Wednesday, May 30, 2012

Ion-based electronic chip to control muscles: Entirely new circuit technology based on ions and molecules

ScienceDaily (May 29, 2012) ? Klas Tybrandt, doctoral student in organic electronics at Linkoping University, Sweden, has developed an integrated chemical chip.

The results have just been published in the journal Nature Communications.

The Organic Electronics research group at Link?ping University previously developed ion transistors for transport of both positive and negative ions, as well as biomolecules. Tybrandt has now succeeded in combining both transistor types into complementary circuits, in a similar way to traditional silicon-based electronics.

An advantage of chemical circuits is that the charge carrier consists of chemical substances with various functions. This means that we now have new opportunities to control and regulate the signal paths of cells in the human body.

"We can, for example, send out signals to muscle synapses where the signalling system may not work for some reason. We know our chip works with common signalling substances, for example acetylcholine," says Magnus Berggren, Professor of Organic Electronics and leader of the research group.

The development of ion transistors, which can control and transport ions and charged biomolecules, was begun three years ago by Tybrandt and Berggren, respectively a doctoral student and professor in Organic Electronics at the Department of Science and Technology at Link?ping University. The transistors were then used by researchers at Karolinska Institutet to control the delivery of the signalling substance acetylcholine to individual cells. The results were published in the Proceedings of the National Academy of Sciences.

In conjunction with Robert Forchheimer, Professor of Information Coding at LiU, Tybrandt has now taken the next step by developing chemical chips that also contain logic gates, such as NAND gates that allow for the construction of all logical functions.

His breakthrough creates the basis for an entirely new circuit technology based on ions and molecules instead of electrons and holes.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Link?ping University, via EurekAlert!, a service of AAAS.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

telenav wade phillips wade phillips time person of the year sag nominations sag nominations time magazine person of the year

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.